Melatonin Regulates Apoptosis and Autophagy Via ROS-MST1 Pathway in Subarachnoid Hemorrhage
نویسندگان
چکیده
Citation: Shi L, Liang F, Zheng J, Zhou K, Chen S, Yu J and Zhang J (2018) Melatonin Regulates Apoptosis and Autophagy Via ROS-MST1 Pathway in Subarachnoid Hemorrhage. Front. Mol. Neurosci. 11:93. doi: 10.3389/fnmol.2018.00093 Compelling evidence has indicated that imbalance between apoptosis and autophagy may be involved in subarachnoid hemorrhage (SAH). We aimed to investigate the effects and mechanisms of melatonin in the homeostasis of apoptosis and autophagy. One-hundred and forty-eight male Sprague-Dawley rats were intraperitoneally injected with melatonin or vehicle 2 h after SAH induction. Western blotting and an immunofluorescent assay were performed to detect the expression of apoptosisand autophagy-related proteins. The neuroprotective effect of melatonin attenuating SAH-induced neurological deficit and brain edema may be associated with the suppression of SAH-induced neuronal apoptosis and autophagy. Furthermore, melatonin inhibited the cleavage of mammalian sterile 20-like kinase 1 (MST1) protein by reducing reactive oxygen species (ROS) content. These effects of melatonin on regulating the homeostasis between apoptosis and autophagy could be reversed by an MST1 agonist, chelerythrine, via enhancement of MST1 cleavage. In conclusion, exogenous melatonin alleviates SAH-induced early brain injury (EBI) by suppressing excessive neuronal apoptosis and autophagy. The underlying mechanism may, at least in part, involve the ROS-MST1 pathway.
منابع مشابه
Hydrogen sulfide ameliorates subarachnoid hemorrhage-induced neuronal apoptosis via the ROS-MST1 pathway
BACKGROUND Hydrogen sulfide (H2S) has shown a neuroprotective role in several cerebrovascular diseases. This study aimed to explore the underlying mechanisms of H2S in early brain injury after subarachnoid hemorrhage (SAH). METHODS One hundred seventy-seven male Sprague-Dawley rats were employed in this study. Sodium hydrosulfide (NaHS), a donor of H2S, was injected intraperitoneally at 60 mi...
متن کاملMst1-FoxO Signaling Protects Naïve T Lymphocytes from Cellular Oxidative Stress in Mice
BACKGROUND The Ste-20 family kinase Hippo restricts cell proliferation and promotes apoptosis for proper organ development in Drosophila. In C. elegans, Hippo homolog also regulates longevity. The mammalian Ste20-like protein kinase, Mst1, plays a role in apoptosis induced by various types of apoptotic stress. Mst1 also regulates peripheral naïve T cell trafficking and proliferation in mice. Ho...
متن کاملGinkgo biloba extract protects early brain injury after subarachnoid hemorrhage via inhibiting thioredoxin interacting protein/NLRP3 signaling pathway
Objective(s): To investigate the effect of Ginkgo biloba extract EGb761 in early brain injury (EBI) after subarachnoid hemorrhage (SAH) and its mechanism. Materials and Methods: The SAH rat model was constructed and pre-treated with EGb761.The neurological function, severity of SAH, water content of brain tissue, damage degree of the blo...
متن کاملمروری بر کنترل اتوفاژی به وسیله ROS (گونه های فعال اکسیژن )
ROS (Reactive Oxygen Species) are small, short-lived and highly reactive molecules that can oxidize proteins, lipids and DNA. ROS are formed by incomplete one-electron reduction of oxygen. ROS include oxygen anions, free radicals, including superoxide and hydroxyl radicals, and peroxides such as hydrogen peroxide (H2O2). Autophagy is a catabolic pathway for degradation ...
متن کاملThe autophagy–lysosomal system in subarachnoid haemorrhage
The autophagy-lysosomal pathway is a self-catabolic process by which dysfunctional or unnecessary intracellular components are degraded by lysosomal enzymes. Proper function of this pathway is critical for maintaining cell homeostasis and survival. Subarachnoid haemorrhage (SAH) is one of the most devastating forms of stroke. Multiple pathogenic mechanisms, such as inflammation, apoptosis, and ...
متن کامل